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Hamiltonian thermodynamics of charged black holes
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We consider the most general diffeomorphism invariant action in 111 spacetime dimensions that contains a
metric, dilaton and Abelian gauge field, and has at most second derivatives of the fields. Our action contains
a topological term~linear in the Abelian field strength! that has not been considered in previous work. We
impose boundary conditions appropriate for a charged black hole confined to a region bounded by a surface of
fixed dilaton field and temperature. By making some simplifying assumptions about the quantum theory, the
Hamiltonian partition function is obtained. We then use the general formalism to study the partition function
for a rotating BTZ black hole confined to a box of fixed radius and temperature.@S0556-2821~99!00210-6#

PACS number~s!: 04.70.Dy, 04.60.Kz, 04.70.Bw
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I. INTRODUCTION

The microscopic origin of black hole entropy is curren
a subject of intense investigation. The Bekenstein-Hawk
entropy@1# of certain extremal and near extremal black ho
has been successfully derived by counting states in the l
coupling limit of string theory@2#. It is important to keep in
mind, however, that several other, very different, approac
have also achieved a measure of success@3–5#. For example,
Carlip @3# has counted edge states in the gauge theory
mulation of 211 gravity and obtained the correct entropy f
the Banados-Teitelboim-Zanelli~BTZ! black hole@6#. This
calculation has taken on new importance with the realiza
that many of the string inspired black holes can be relate
the BTZ geometry either by looking at their near horiz
geometry@7#, or by using M theory inspired duality argu
ments @8#. This suggests that the correct explanation
black hole entropy might not necessarily be tied to a spec
microscopic theory, nor to any specific low energy grav
theory: it might in some sense be universal@4#. It is therefore
of interest to examine the statistical mechanics of black ho
in a large variety of theories, in order to look for mod
independent features. A particularly useful arena for s
investigations is generic dilaton gravity in two spacetime
mensions. This class of theories provides a large numbe
diffeomorphism invariant, solvable theories of gravity th
admit black hole solutions. Moreover, there are several s
cific models in this class that are of direct physical sign
cance, such as spherically symmetric gravity@9# and Jackiw-
Teitelboim gravity@10#. The latter is important because i
black hole solutions correspond to the dimensionally redu
BTZ black hole@11#.

The study of the Hamiltonian thermodynamics of bla
holes in generic vacuum dilaton gravity was started in@12#,
generalizing a formalism first applied by Louko and Whitin

*Email address: joey@theory.uwinnipeg.ca
†Email address: gabor@theory.uwinnipeg.ca
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@13# to spherically symmetric gravity. The purpose of th
present work is to extend the results of@12# to include cou-
pling to an Abelian gauge field. In particular we calculate t
Hamiltonian partition function for a charged black hole co
fined to a ‘‘box’’ of fixed dilaton size. Our generic result
contain as special cases all the black holes previously a
lyzed @14# using Louko and Whiting’s formalism, and pro
vide a unified treatment of a large variety of charged bla
holes. As a concrete, and interesting application, we will u
our results to construct the Hamiltonian partition function f
the rotating BTZ black hole, which, to the best of our know
edge, has not previously been studied.

The paper is organized as follows. In Sec. II we revie
generic dilaton gravity coupled to an Abelian gauge fie
We present the most general solution as well as a descrip
of the thermodynamic properties of black holes in the g
neric theory. For completeness, we include in the actio
topological term involving the Abelian field strength. Th
term can only be constructed in two spacetime dimensi
and has not been considered in previous work. In Sec. III,
Hamiltonian analysis of the theory is summarized, while S
IV derives the boundary terms that must be added to
Hamiltonian when considering a charged black hole in a b
Section V presents the Hamiltonian partition function usi
the results of Sec. IV and examines the resulting thermo
namics in the semi-classical, or saddle-point approximat
In Sec. VI we analyze the rotating BTZ black hole. Finall
Sec. VII summarizes our results and discusses prospect
future work.

II. GENERIC DILATON GRAVITY WITH ABELIAN
GAUGE FIELD

In two spacetime dimensions, the Einstein tensor vanis
identically. In order to construct a dynamical theory of gra
ity with no more than two derivatives of the metric in th
action, it is necessary to introduce a scalar field, traditiona
called the dilaton. In the past, the dilaton was treated
essentially a Lagrange multiplier, with no physical or ge
metrical significance. In recent years, however, it has
©1999 The American Physical Society05-1
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A. J. M. MEDVED AND G. KUNSTATTER PHYSICAL REVIEW D59 104005
come clear that the dilaton plays an important role. For
ample, when the dilaton theory is derived via dimensio
reduction by imposing spherical symmetry in~n12!-
dimensional Einstein gravity, the dilaton has a geometr
interpretation as the invariant radius of the n-sphere. M
generally, the dilaton is instrumental in determining both
symmetries and the topology of the solutions@15#.

In the following, we consider the most general acti
functional depending on the metric tensorḡmn , scalar fieldf̄
and Abelian gauge field in two spacetime dimensio
@16,17#:

S̄@ ḡ,f̄,A#5E d2xA2ḡF 1

2G
S 1

2
ḡab]af̄]bf̄1

1

l 2V̄~f̄ !

1D~f̄ !R~ ḡ!D 2
1

4
W̄~f̄ !FmnFmn

1
Z̄~f̄ !

A2ḡ
emnFmnG , ~1!

where G is the dimensionless 2D Newton constant,Fmn

5]mAn2]nAm and l is a fundamental constant with dimen
sions of length. In addition,V̄(f̄), D(f̄), W̄(f̄) and Z̄(f̄)
are arbitrary functions of the dilatonf̄. The last term in the
action is a topological term that is only possible in tw
spacetime dimensions.1

It is convenient to eliminate the kinetic term for the sca
field. This can be done with an invertible field redefinitio
providing thatD(f̄) is a differentiable function off̄ such
that D(f̄)Þ0 anddD(f̄)/df̄Þ0 for any admissable valu
of f̄ @16,18#:

gmn5V2~f̄ !ḡmn ~2!

f5D~f̄ ! ~3!

where

V2~f̄ !5expS 1

2E df̄

~dD/df̄ !
D . ~4!

The electromagmetic potential is left unchanged. In terms
the new fields, the action Eq.~1! takes the form

S@g,A#5
1

2GE d2xA2gS fR~g!1
1

l 2 V~f! D ~5!

1E d2xS 2
1

4
A2gW~f!FmnFmn

1Z~f!emnFmnD , ~6!

1G.K. is grateful to R. Jackiw for pointing out this possibility.
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whereV, W(f) andZ(f) are defined as

V~f!5
V̄„f̄~f!…

V2
„f̄~f!…

~7!

W~f!5V2
„f̄~f!…W̄„f̄~f!… ~8!

Z~f!5Z̄„f̄~f!…. ~9!

We henceforth consider the action only in the form E
~6!, keeping in mind that the physical metric in general m
be different fromgmn .2 The field equations are

R1
1

l 2

dV

df
2

G

2

dW~f!

f
FabFab1

2G

A2g

dZ

df
eabFab50

~10!

¹m¹nf2
1

2l 2 gmnV~f!2
3

4
GgmnW~f!FabFab

1GW~f!Fm
g Fng50 ~11!

¹mS W~f!Fmn22
emn

A2g
Z~f!D . ~12!

It follows directly from the above field equations that o
shell all the fields are left invariant by Lie derivation alon
the following Killing vector @15#:

km5 l emn]nf/A2g ~13!

where emn is the contravariant Levi-Civita symbol: (e01

52e1051, etc.! and the constantl has been included to
ensure that the vector components are dimensionless.

The most general solution to the field equations witho
the topological term has been found in@17#. The procedure
required with the extra term is virtually identical, so we w
omit the details. The solution for the Abelian gauge field

F5
1

W~f!
„q22Z~f!… ~14!

whereq is a constant that corresponds to the Abelian char
In the above,F is a scalar defined implicitly byFmn

5FEmn, whereEmn5emn/A2g is the fundamental alternat
ing tensor. It is most convenient to write the final solutions
manifestly static coordinates by exploiting the form of t
Killing vector given above. That is, we can choose the s
tial coordiate to be proportional to the dilaton field:

f5x/ l . ~15!

In these coordinates, the metric depends only onx:

ds252@ j ~f!22GlM2 l 2GK~f;q!#dt2

1@ j ~f!22GlM2 l 2GK~f;q!#21dx2 ~16!

2It is crucial in this regard that the black hole thermodynamics
invariant under conformal reparametrizations of the form Eq.~2!.
5-2
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HAMILTONIAN THERMODYNAMICS OF CHARGED BLACK HOLES PHYSICAL REVIEW D59 104005
whereM is a constant of integration, which will be show
below to be the Arnowitt-Deser-Misner~ADM ! mass of the
solution and we have defined

j ~f!5E
0

f

df̃V~f̃ ! ~17!

K~f;q!5E
0

f

df̃„q22Z~f̃ !…2/W~f̃ !.

~18!

The general solution has an apparent horizon at the sur
f5f05const forf0 given by

f ~f0!50 ~19!

where we have defined

f ~f;M ,q!ª@ j ~f!22GlM2 l 2GK~f;q!#. ~20!

The global form of the solution, and in particular the numb
of horizons, depends on the specific forms of the funct
j (f) andK(f;q).

We now review the thermodynamic properties of the
lutions. Specifically, we assume thatf0 is the value of the
dilaton field at an exterior, bifurcative horizon. A straightfo
ward calculation reveals that the surface gravity at the h
zon is

kªA2
1

2
¹mkn¹mkn U

f0

5
f 8~f0!

2l
5

V~f0!

2l
2

l „q22Z~f0!…2G

2W~f0!
~21!

where the prime denotes differentiation with respect tof.
The Hawking temperature of the horizon can be cal

lated by analytically continuing the solution exterior to t
horizon to Euclidean time, imposing periodicity in the imag
nary time direction and requiring the resulting solution to
regular at the horizon. The resulting Hawking temperatur

TH5
f 8~f0 ;M ,q!

4p l
. ~22!

As discussed in@15#, the expression for the black hol
entropy can most easily be derived by demanding that
first law of thermodynamics be satisfied with respect to
finitesimal variations of the mass and charge of the bl
hole. In particular, if we vary the parametersM andq of the
solution while staying on the event horizon,f 50, we get the
condition on the corresponding variation off0 at the hori-
zon:
10400
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]f0
df01

] f

]M
dM1

] f

]q
dq

5S V~f0!2
l 2G„q22Z~f0!…2

W~f0! D df022Gl2dM

2P~f0 ,q!dq ~23!

where

P~f0 ,q!5Ef0
df

„q22Z~f!…

W~f!
. ~24!

This yields the first law of black hole thermodynamics,

dM5THdSBH2Pdq, ~25!

where we have defined the Bekenstein-Hawking entropy

SBH~M ,q!5
2p

G
f0~M ,q! ~26!

where f0(M ,q) is obtained by solving Eq.~19!. Equation
~25! also shows thatP is the generalized force associate
with the chargeq.

III. HAMILTONIAN ANALYSIS

The Hamiltonian analysis for generic dilaton gravity h
been presented in many works. Here we summarize the
sults, using the notation and conventions of@17#. We start by
decomposing the metric as follows:

ds25e2r@2u2dt21~dx1vdt!2#, ~27!

wherex is a local coordinate for the spatial sectionS andr,
u and v are functions of spacetime coordinates (x,t). In
terms of this parametrization, we find the canonical Ham
tonian ~up to surface terms which will be discussed below!:

Hc5E dxS vF1
u

2G
G1A0JD ~28!

wherePf , Pr andPA1
are the momenta conjugate tof, r

andA1, respectively while

F5r8Pr1f8Pf2Pr8;0 ~29!

G52f922f8r822G2PfPr2e2r
V~f!

l 2

1
Ge2r

W~f!
@PA1

22Z~f!#2;0 ~30!

J52PA1
8 ~31!

are secondary constraints. Note thatF anndG generate spa-
tial and temporal diffeomorphisms, whileJ is the Gauss law
constraint that generates Abelian gauge transformations.

The general solution presented in the previous sec
suggests that there are two independent, diffeomorphism
5-3
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A. J. M. MEDVED AND G. KUNSTATTER PHYSICAL REVIEW D59 104005
variant physical observables, namely the mass of the b
hole and its Abelian charge. These observables can easi
expressed in terms of the phase space variables. In partic
define

Q5PA1
. ~32!

The constant modeq of Q is therefore a physical observab
and corresponds precisely to the Abelian charge in the s
tion Eq. ~14!. Similarly, we can define the mass observab

M5
l

2G S e22r
„G2Pr

22~f8!2
…1

j ~f!

l
2GK~f,Q! D

~33!

where

K~f,Q!ªEf

df̃
„Q22Z~f̃ !…2

W~f!
. ~34!

M commutes with the constraints and is spatially const
on the constraint surface since

]M
]x

52 le22rS GPrF1
1

2G
f8G2e2rP~f,Q!JD

~35!

where

P~f,Q!5E df
„PA1

22Z~f!…

W~f!
. ~36!

The constant mode ofM is the mass parameter appearing
the solution Eq.~16!. Although the observablesM andQ
are invariant under general diffeomorphisms, their con
gatesPM andPQ are only invariant with respect to diffeo
morphisms that vanish on the boundaries of the system@17#.

IV. BOUNDARY TERMS IN THE HAMILTONIAN

The previous section neglected the boundary terms
must be added to the canonical Hamiltonian in order that
variational principle be well defined. These depend on
boundary conditions and define the canonical energy, s
the remainder of the Hamiltonian vanishes on the constr
surface. We now derive the boundary terms for bound
conditions corresponding to a charged black hole in a bo
fixed, constant ‘‘radius’’~surface of constant dilaton field!.
For convenience we rewrite the canonical Hamiltonian
follows:

Hc5E
s2

s1

dx~ ũG̃1 ṽF1ÃJ!1H12H2 ~37!

where have replaced the original Hamiltonian constraintG by
the linear combination of constraints corresponding to
spatial derivative of the mass observable:

G̃52
]M
]x

5 le22rS GPrF1
1

2G
f8G2e2rPJD ~38!
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and replace the original Lagrange multipliers by

ũ5
ue2r

lf8
~39!

ṽ5v2
uGPr

f8
~40!

Ã5A01
ue2r

f8
P. ~41!

H1 andH2 are previously neglected boundary terms det
mined by the requirement that the surface terms in the va
tion of Hc vanish for a given set of boundary conditions.

We wish to consider the~111!-dimensional analogue of a
charged black hole in a box of fixed radius. We will therefo
keep the value of the dilaton at the outer boundaryf1

ªf(s1) fixed and independent of time, as well as the co
ponent of the metric along the world line of the box@gtt

1

ªgtt(s1)#. The relevant boundary conditions on the vec
potential areA1(s1)50 andA0(s1)5A0

15const. Give the
above conditions, the boundary variation of the canoni
Hamiltonian Eq.~37! at s1 will vanish if

dH1~M,Q!5ũdMus1
1ãdQus1

. ~42!

Since

ũ15S gtt
1

2GMl 2 j ~f1!1 l 2GK~f1 ,Q!
D 1/2

~43!

Ã15A0
11

l

2
ũ~s1!

]K~f1 ,Q!

]Q U
s1

. ~44!

Equation~42! can be directly integrated to yield

H1~M,Q!5
A2gtt

1 j ~f1!

lG

3S 12A12
2GlM
j ~f1!

2
l 2GK~f1 ,Q!

j ~f1!
D

1A0
1Q. ~45!

Note that we have chosen the constant of integration so a
guarantee thatH150 whenM5Q50. If K(f1 ,Q) re-
mains finite asf1→`, then

H1~M,Q!→A 2gtt
1

j ~f1!
M. ~46!

Hence, on the constraint surface,M is proportional to the
ADM mass. The value of the constant of proportionality w
depend on the boundary conditions on the metric andf1 .
This will be discussed in more detail below.

We next consider the inner boundarys2 . Following the
work of Louko and Whiting@13# we require our spatial slice
5-4
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HAMILTONIAN THERMODYNAMICS OF CHARGED BLACK HOLES PHYSICAL REVIEW D59 104005
to approach the bifurcation point (km50) of the black hole
along a static slice. These boundary conditions are nat
for the consideration of the thermodynamics of the bla
hole, since the resulting spacetimes can be analytically c
tinued to the Euclidean spacetime described by the n
singular Gibbons-Hawking instanton. Given the general fo
of the Killing vector in Eq.~13!, for a static slice (ḟ250),
the condition thats2 be a bifurcation point reduces to

f8~s2!50. ~47!

From the thermodynamic considerations of Sec. II, it follo
that the metric on the inner boundary must approach
form

ds2→2R2~dt/ã!21H~R!dR2 ~48!

whereR50 at the bifurcation points2 , H(0)51 and 2pã
equals the periodicity of the Euclidean time required to ma
the Euclidean solution regular at the horizon.3 The required
boundary conditions on the metric components in (t,R) co-
ordinates are therefore

e2r~s2!51 ~49!

v~s2!50 ~50!

u~s2!50 ~51!

u8~s2!5
1

ã
. ~52!

Since, in terms of phase space coordinates,

uku25 l 2e22r
„~Gpr!22f82

… ~53!

we must also impose the condition

pr~s2!50 ~54!

to ensure thatuku2
2 50.

Finally, following Louko and Winters-Hilt @14#, we
choose the boundary conditions on the U~1! vector potential
at the bifurcation point to be

A1~s2!50 ~55!

A0~s2!5A0
25const. ~56!

3Recall that the time coordinate in this section is normalized

thatgtt
1 is fixed. The parameterã therefore differs froma in Sec. II.
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With the above boundary conditions we find

ṽ~s2!50 ~57!

ũ~s2!5
2l

ãṼ~f2 ,Q!
~58!

Ã~s2!5
l 2

ãṼ~f2 ,Q!

]K~f2 ,Q!

]Q 1A0
2

~59!

where we have defined

Ṽ~f,Q!5V~f!2Gl2
]K~f,Q!

]f
. ~60!

With these boundary conditions there will be no bounda
terms ats2 from the variation of the Hamiltonian if

dH25
2l

ãṼ~f2 ,Q!
dMU

s2

1
l 2

ãṼ~f2 ,Q!

]K~f2 ,Q!

]Q U
s2

dQ1A0
2dQ.

~61!

Next we use the fact that the norm of the Killing vector
constrained to vanish at the inner boundary to obtain

dM5
1

2Gl
Ṽ~f2 ,Q!df22

l

2

]K~f2 ,Q!

]Q dQ. ~62!

Substituting this into Eq.~61! and simplifying gives

dH25
1

ãG
df21A0

2dQ ~63!

which can be trivially integrated to yield

H2~M,Q!5
1

ãG
f2~M,Q!1A0

2Q. ~64!

By using Eq. ~26! our final expression for the canonica
Hamiltonian on the constraint surface takes the simple fo

Hc5E~M ,q;f1!2
1

2pã
SB.H.~M ,q!2gq ~65!

where

E~M ,q;f1!5
A2gtt

1 j ~f1!

Gl

3S 12A12
2GMl

j ~f1!
2

l 2GK~f1 ,q!

j ~f1!
D
~66!

o

5-5
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A. J. M. MEDVED AND G. KUNSTATTER PHYSICAL REVIEW D59 104005
is the quasilocal energy andg[A0
22A0

1 . We have also
used the fact that on the constraint surfaceM5M andQ
5q, whereM and q correspond to the physical mass a
charge appearing in the general solution Eq.~16!.

In addition to the dynamical variablesM and q, the ca-
nonical Hamiltonian appears to depend on four fixed exte
parameters,gtt

1 , f1 , ã and g. f1 plays the role of the
effective box size, whileg is analogous to a chemical pote
tial. gtt

1 and ã on the other hand must be fixed by imposi
further boundary conditions. In particular, the metricgtt

1 is
related to the choice of time coordinate along the bound
This is normally chosen to equal the proper time as meas
with respect to a given physical metric. In vacuum dilat
gravity, the choice of physical metric is subtle since one c
always do conformal reparametrizations involving the di
ton. One must therefore define the ‘‘physical metric’’ to
the one which determines the geodesics of massive test
ticles. For now we will consider the most general case a
write

gmn5h~f!gmn
phys ~67!

whereh(f) is an arbitrary function off that must ultimately
be determined experimentally. Ifgtt

phys(s1)521, then

gtt
152h~f1!. ~68!

The constantã must be fixed by thermodynamic consi
erations@13#. We have already shown that 2pã must be
equal to the period of the corresponding Euclidean time
order for the Euclideanized solution to be regular at the
rizon. In the Euclidean formulation of black hole thermod
namics, the inverse temperatureb at the boundary of the
system is

b5A2gtt
phys~s1!2pã52pã. ~69!

The final form of the canonical Hamiltonian is therefore

Hc5E~M ,q,f1!2b21SB.H.~M ,q!2gq ~70!

where

E~M ,q;f1!5
Ah~f1! j ~f1!

Gl

3S 12A12
2GMl

j ~f1!
2

l 2G2K~f1 ,q!

j ~f1!
D .

~71!

V. HAMILTONIAN PARTITION FUNCTION

The quantum partition function of interest is formally d
fined as

Z@b,f1 ,g#5Tr@exp~2bĤ !# ~72!

where the trace is over all physical states andb corresponds
to the~fixed! temperature at the boundary of the system. T
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trace is most easily expressed in term of the eigenst
uM ,Q& of the mass and charge operators:

Z~b,f1 ,g!5E dME dQ m~M ,Q!^M ,Que2bĤuM ,Q&.

~73!

In the above,m(M ,Q) is an as yet unknown measure on t
space of observables. Following Louko and Whiting@13#, we
will make the simplest, physically reasonable assumpti
about the measure and the allowed values ofM and Q. A
more rigorous derivation of the measure will be addresse
future work. First of all, we restrict the ADM massM to be
positive. Secondly, we allow only those value ofM andQ for
which at least one bifurcative horizon exists wheref (f) has
a simple zero~i.e., no extremal black holes or naked sing
larities!. Finally, we require the value of the dilaton at th
horizon to be less than its value at the boundary of the s
tem ~i.e., the box must lie outside the horizon! so that equi-
librium is in fact possible. With these assumptions the sp
of allowed values for the observables is finite. This will b
made explicit for specific examples in the next section.

As in @13# ~see also@19#! we assume that

m~M ,Q!^M ,QuM ,Q&5
1

V ~74!

whereV is the volume of the allowed space of observabl
The final expression for the partition function is therefore

Z~b,f1 ,g!5V21E
V
dMdqeSBH~M ,q!e2b„E~M ,q,f1!2gq….

~75!

Note that the Bekenstein-Hawking entropy enters the pa
tion function as the logarithm of an apparent degeneracy
the physical mass and charge eigenstates. Moreover,q is
thermodynamically analoguous to particle number, whileg
plays the role of a chemical potential.

The above expression, can in principle be integrated
yield the partition function describing the thermodynam
charged black holes in a box for any particular dilaton gra
ity theory. We will now show that it gives the correct cla
sical thermodynamic behavior in the saddle-point appro
mation. In this approximation, the choice of measure
irrelevant except in the unlikely event that it is exponential
the observables. Thus, we have

Z~b,f1 ,g!'e2I ~M̄ ,q̄,b,f1 ,g! ~76!

where we have defined

I ~M ,q,b,f1 ,g!5b„E~M ,q,f1!2gq…2SBH~M ,q!
~77!

and M̄ and q̄ are the values of the mass and charge at
minimum of I ~if one exists!. The equation obtained by ex
tremizing with respect toM is
5-6
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b5Af ~f1 ,M̄ ,q̄!

h~f1!
bH~M̄ ,q̄! ~78!

which implies that the temperature at the boundary is eq
to the red-shifted Hawking temperaturebH51/TH

54p l / f 8(f2 ,M̄ ,q̄) associated with the mean mass a
charge.

Variation with respect toq gives for the chemical poten
tial:

g5
l

2

bH~M̄ ,q̄!

b S ]K~f1 ,q!

]q
2

]K~f2 ,q!

]q D U
M̄ ,q̄

~79!

where asf25f2(M ,q) as determined by Eq.~19!. Using
Eq. ~76! we can evaluate the mean energy, mean charge
entropy of the system:

^E&52
] ln~Z!

b U
M̄ ,q̄

1
g

b

] ln~Z!

]g U
M̄ ,q̄

'E~M̄ ,q̄,f1! ~80!

^q&5b21 U] ln~Z!

]g U
M̄ ,q̄

'q̄ ~81!

S5S 12b
]

]b D ln~Z!5SBH~M̄ ,q̄!. ~82!

A straightforward calculation verifies that the above expr
sions for the mean energy, charge and entropy automatic
obey the generalized first law

d^E&5
]E

]M
dM̄1

]E

]q
dq̄1

]E

]f1
df1

5b21dSBH1gd^q&2Wdf1 ~83!

where

Wª2
]E~M ,q,f1!

]f1
U

M̄ ,q̄

~84!

is a generalized surface pressure: it is the rate of chang
quasilocal energy with ‘‘box size.’’

It can be verified that in the case of spherically symme
gravity, the above generic expressions for the mean ene
entropy, etc. correctly reproduce earlier results@20# for the
semi-classical thermodynamics of Reissner-Nordstrom b
holes. We now consider a specific and interesting case
has not been analyzed in previous work: the rotating B
black hole.

VI. THE ROTATING BTZ BLACK HOLE

Starting with the Einstein action with cosmological co
stant in 211 dimensions:
10400
al

nd

-
lly

of

c
y,

k
at

Z

I ~3!5
1

16pG~3!E d3xA2g~3!
„R~g~3!!1L…. ~85!

In 211 dimensions, the gravitational constantG(3) has di-
mensions of length. We now impose axial symmetry by co
sidering metrics of the form4

ds~3!
2 5gmndxmdxn1f~x!2~adu1Amdxm!2 ~86!

wherea is an arbitrary constant with dimensions of leng
which, without loss of generality we take to be proportion
to the~211!-dimensional Planck lengtha58G(3). The one-
form componentsAm are dimensionless. Unless the one-for
A5Amdxm is closed, the metric is not static so that the fie
strengthFmn5Am,n2An,m is proportional to the angular mo
mentum of the solution. With the above metric ansatz
reduced action is that of Jackiw-Teitelboim dilaton grav
coupled to an Abelian gauge field:

I ~2!5E d2xA2gS fR~g!1fL2
1

4
f3FmnFmnD . ~87!

This action is already of the generic form Eq.~6! without the
need for further definitions. In particular,G51/2, l
5L21/2, V(f)5f andW(f)5f3. Choosingr 5 lf as the
spatial coordinate the general solution takes the form

ds252 f ~r ,M ,J!dt21
1

f ~r ,M ,J!
dr2 ~88!

where

f ~r ,M ,J!5S r 2

2l 2 2Ml 1
J2l 4

4r 2 D . ~89!

As mentioned above, the Abelian chargeJ in this case is the
angular momentum of the black hole. For non-zeroJ there
are again two event horizons, at

r o,i5 l „Ml 6A~Ml !22~Jl !2/2…1/2 ~90!

where r o (r i) is the outer~inner! horizon. The associated
entropy is

S54p
r o

l
54pf~r o!5

A

4G~3!
~91!

where A52paf(r o)516pG(3)f(r o) is the invariant cir-
cumference of the outer horizon, as calculated from Eq.~86!.
The Bekenstein Hawking entropy can also be calculated
rectly from Eq.~22! to be

TBH5
1

4p l 2 S r o
22r i

2

r o
D . ~92!

4In 211 dimensions, there is a generalized Birkhoff theore
which states that all solutions have axial symmetry, and are stat
ary.
5-7
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In the semi-classical approximation, the mean energy o
black hole in a box of fixed temperature and radius is

^E&5
A2r 1

l 2 S 12A12
2M̄ l 3

r 1
2

1
J̄2l 6

2r 1
4 D ~93!

whereM̄ and J̄ are the mean mass and angular momentu
Note that we have used the fact that the physical metri
gmn in this case, so thath(f1)51. The physical metric is
not asymptotically flat~it is in fact a metric of constant cur
vature! which accounts for the strange asymptotic behav
of the mean energy as the box size goes to infinity. One
invert this relation to express the mass in terms of the m
energy:

M̄5^E&2
^E&2l 3

2r 1
2 1

^J&2l 3

4r 1
2 . ~94!

It is also straightforward to calculate the chemical potent
It is

g52

Jl3A12r o
2/r 1

2

2r o
2A12

J2l 6

2r o
2r 1

2

~95!

which approaches

g→2
Jl3

2r o
2 ~96!

as r 1→`.
Finally, we calculate the allowed volumeV of the physi-

cal configuration space. We wish to restrict the values oM
and J so that there is always at least one positive, n
degenerate root forf (r ,M ,J)50. This requiresM.0 and
from Eq. ~90! M.J/A2. For the box size to be greater tha
the radius of the outer horizon, we also require
lip

ev

J.

s.

10400
a

.
is

r
n
n

l.

-

M,
J2l 3

4r 1
2 1

r 1
2

2l 3 . ~97!

The volume of the allowed observable space is therefore

V5E
2A2r 1

2 / l 3

A2r 1
2 / l 3

dJE
J/A2

J2l 3/4r 1
2

1r 1
2 /2l 3

dM5
A2

3

r 1
4

l 6 . ~98!

VII. CONCLUSIONS

We have calculated the Hamiltonian partition function f
generic dilaton gravity coupled to an Abelian gauge fie
The class of theories considered contains many spe
charged black holes of physical interest. For example,
formalism gives the correct partition function in the sadd
point approximation for spherically symmetric gravity. Th
generic results were used to obtain the partition function
a rotating BTZ black hole confined to a box of fixed radi
and temperature.

In principle the partition function that we derived can b
integrated exactly. In practice, however, a numerical analy
is required in order to go beyond the semi-classical appro
mation. In a subsequent paper, we will do such a numer
analysis for specific theories, such as the BTZ black hole
order to gain further information about phase structure, s
cific heats, etc. The ansatz that we used is, however, o
rigorous in the semi-classical approximation. In particul
the integration measure, although motivated by plausibi
arguments, was not derived from the fundamental quan
theory, so it is likely that there are further quantum corre
tions that we have not been able to incorporate. A deta
analysis of the possible quantum corrections is currently
progress.
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