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We consider the most general diffeomorphism invariant actiorntift $pacetime dimensions that contains a
metric, dilaton and Abelian gauge field, and has at most second derivatives of the fields. Our action contains
a topological term(linear in the Abelian field strengttthat has not been considered in previous work. We
impose boundary conditions appropriate for a charged black hole confined to a region bounded by a surface of
fixed dilaton field and temperature. By making some simplifying assumptions about the quantum theory, the
Hamiltonian partition function is obtained. We then use the general formalism to study the partition function
for a rotating BTZ black hole confined to a box of fixed radius and temperdt8e&56-282(99)00210-9

PACS numbegps): 04.70.Dy, 04.60.Kz, 04.70.Bw

I. INTRODUCTION [13] to spherically symmetric gravity. The purpose of the
present work is to extend the results[@®] to include cou-
The microscopic origin of black hole entropy is currently pling to an Abelian gauge field. In particular we calculate the
a subject of intense investigation. The Bekenstein-Hawkindiamiltonian partition function for a charged black hole con-
entropy[1] of certain extremal and near extremal black holesfined to a “box” of fixed dilaton size. Our generic results
has been successfully derived by counting states in the largg@ntain as special cases all the black holes previously ana-
coupling limit of string theonyf2]. It is important to keep in  1yzed[14] using Louko and Whiting’s formalism, and pro-
mind, however, that several other, very different, approache¥ide & unified treatment of a large variety of charged black
have also achieved a measure of sucfss]. For example, holes. As a concrete, and mtere;tmg apphcgpon, we \_N|II use
Carlip [3] has counted edge states in the gauge theory for24 resu!ts to construct the Hamlltoman partition function for
mulation of 2+1 gravity and obtained the correct entropy for the rotating BTZ bl"’.‘Ck hole, which, to the best of our knowl-
the Banados-Teitelboim-ZanellBTZ) black hole[6]. This edge, has not'prewougly been studied. .
calculation has taken on new importance with the realization The paper is organized as follows. In Sec. 1l we review

N eneric dilaton gravity coupled to an Abelian gauge field.
that many of the stnng inspired bl‘?Ck holes can be relat_ed t e present the most general solution as well as a description
the BTZ geometry either by looking at their near horizon

_ ) < : of the thermodynamic properties of black holes in the ge-
geometry[7], or by using M theory inspired duality argu- peric theory. For completeness, we include in the action a
ments[8]. This suggests that the correct explanation fory,ngjogical term involving the Abelian field strength. This

black hole entropy might not necessarily be tied to a specifi¢germ can only be constructed in two spacetime dimensions
microscopic the_ory, nor to any spec_:lflc low energy gravity and has not been considered in previous work. In Sec. Ill, the
theory: it might in some sense be univerigél Itis therefore 5 ijtonian analysis of the theory is summarized, while Sec.
of interest to examine the statistical mechanics of black holef, gerives the boundary terms that must be added to the
in a large variety of theories, in order to look for model gmiltonian when considering a charged black hole in a box.
independent features. A particularly useful arena for sucksection v presents the Hamiltonian partition function using
mvest'lgatlons.ls generic dllatqn grawty in two spacetime di-the results of Sec. IV and examines the resulting thermody-
mensions. This class of theories provides a large number qfgmics in the semi-classical, or saddle-point approximation.
diffeomorphism invariant, solvable theories of gravity that|, sec. v| we analyze the rotating BTZ black hole. Finally,

admit black hole solutions. Moreover, there are several Spesec. v|| summarizes our results and discusses prospects for
cific models in this class that are of direct physical signifi-f,re work.

cance, such as spherically symmetric graj@#yand Jackiw-
Teitelboim gravity[10]. The latter is important because its
black hole solutions correspond to the dimensionally reduced
BTZ black hole[11].

The study of the Hamiltonian thermodynamics of black In two spacetime dimensions, the Einstein tensor vanishes
holes in generic vacuum dilaton gravity was startedl1if], identically. In order to construct a dynamical theory of grav-
generalizing a formalism first applied by Louko and Whiting ity with no more than two derivatives of the metric in the

action, it is necessary to introduce a scalar field, traditionally
called the dilaton. In the past, the dilaton was treated as
*Email address: joey@theory.uwinnipeg.ca essentially a Lagrange multiplier, with no physical or geo-
TEmail address: gabor@theory.uwinnipeg.ca metrical significance. In recent years, however, it has be-

II. GENERIC DILATON GRAVITY WITH ABELIAN
GAUGE FIELD
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come clear that the dilaton plays an important role. For exwhereV, W(¢) andZ(¢) are defined as
ample, when the dilaton theory is derived via dimensional

reduction by imposing spherical symmetry itm+2)- V($(¢))
: : . : ; . : V(p)=——— (7)
dimensional Einstein gravity, the dilaton has a geometrical 02(H( )
interpretation as the invariant radius of the n-sphere. More
generally, the dilaton is instrumental in determining both the W( ¢)=Qz($(¢))V_V($(¢)) ®)

symmetries and the topology of the solutidis].

In.the foIIowmg, we COI’ISIdte the most genergl action Z($)=Z(B(b)). )
functional depending on the metric tengpy, , scalar fieldg _ . .
and Abelian gauge field in two spacetime dimensions We henceforth consider the action only in the form Eqg.

[16,17: (6), keeping in mind that the physical metric in general may
be different fromg,w.2 The field equations are
S9.¢,A fd2 vV all i 1V_ 1dV G dWe) 2G dz
= — — | —g% 4+ —
“d¢p 2 ¢ J—gd¢
1 (10
+ D(¢)R(g)) - ZW(<;/>)F"”F,W 1 3
o V;vad)_ Wg;u}v(d))_ ZGgMVW(¢)FaﬁFaﬁ
z(¢)
+ —€""F ., |, (1) +GW(¢)F)F,,=0 (11
-9
yay
where G is the dimensionless 2D Newton constaft,, V| W()FH'—2—=12(¢) |. (12
=d,A,—d,A, andl is a fundamental constant with dimen- 9

sions of length. In additionV(¢), D(¢#), W(¢) andZ(#) 1t follows directly from the above field equations that on
are arbitrary functions of the dilatog. The last term in the shell all the fields are left invariant by Lie derivation along
action is a topological term that is only possible in two the following Killing vector[15]:

spacetime dimensiorts.

It is convenient to eliminate the kinetic term for the scalar k#=1€e""9,¢/N—g (13
field. This can be done with an invertible field redefinition | o o c#7 is the contravariant Levi-Civita symbol:ef*
providing thatD(¢) is a differentiable function ofp such = _¢10=1 etc) and the constant has been included to
thatD(¢)#0 anddD(¢)/d¢+0 for any admissable value ensure that the vector components are dimensionless.
of ¢ [16,18: The most general solution to the field equations without

the topological term has been found[iti7]. The procedure
9,,=0%$)g,, (2)  required with the extra term is virtually identical, so we will
. . omit the details. The solution for the Abelian gauge field is
$=D(¢) () 1
F= o (@=22(4)) (14)
where W(¢)
1 iy whereq is a constant that corresponds to the Abelian charge.
Qz(g)=exr{ _J —¢_> ) (4) In the above,F is a scalar defined implicitly byF*”
2J) (dD/d¢) =FE*", whereE*"= ¢**/\/—g is the fundamental alternat-

. o ing tensor. It is most convenient to write the final solutions in
The electromagmetic potential is left unchanged. In terms ofanifestly static coordinates by exploiting the form of the

the new fields, the action Eql) takes the form Killing vector given above. That is, we can choose the spa-
1 1 tial coordiate to be proportional to the dilaton field:
S[Q.A]Z%f dzxv—g(¢R(g)+ |—2V(¢)> ©) b=x/1. (15)

In these coordinates, the metric depends onlyon

1
+ f dZX( — V- OWHFF,, ds’=—[j(¢)—2GIM—I2GK(¢;q)]d?

+[i(¢)—2GIM=1°GK(¢;q)] 'dx*  (16)
+ Z(¢)e‘”F,”> ; (6)
2t is crucial in this regard that the black hole thermodynamics are
1G.K. is grateful to R. Jackiw for pointing out this possibility. invariant under conformal reparametrizations of the form @y.
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whereM is a constant of integration, which will be shown of of of
below to be the Arnowitt-Deser-MisnéADM) mass of the 0= £5¢o+ oM+ E&I
solution and we have defined 0
12G(q—2Z( o))
oo R e L
J'(¢)=f doV(g) 17
0 —P(¢o,q)q (23
¢ where
K(d;a)= | de(q—2Z($)IW( ).
(¢;:q) fo #(A—2Z(¢))TW() . f%d (q-22(4)) »
The general solution has an apparent horizon at the surfacg!iS Yields the first law of black hole thermodynamics,
¢= ¢po=const for ¢, given by SM =T, 8Ss— P50, (25)
f(o)=0 (190  where we have defined the Bekenstein-Hawking entropy:
2
where we have defined Sen(M, Q)= -5 $o(M.q) (26)

f(d:M.q):=[](b)—2GIM—12GK(b:q)]. 20 where ¢¢(M,q) is obtained by solving Eq(19). Equation
(6M.q):=Li(¢) (¢ia)] 0 (25) also shows thaf is the generalized force associated

) . . with the chargey.
The global form of the solution, and in particular the number

of horizons, depends on the specific forms of the function
j(¢) andK(#;q).

We now review the thermodynamic properties of the so- The Hamiltonian analysis for generic dilaton gravity has
lutions. Specifically, we assume thét, is the value of the been presented in many works. Here we summarize the re-
dilaton field at an exterior, bifurcative horizon. A straightfor- sults, using the notation and conventiong bf]. We start by
ward calculation reveals that the surface gravity at the horidecomposing the metric as follows:

zon is
1 14
K= V _EV’MK VMkV

IIl. HAMILTONIAN ANALYSIS

ds?=e?[ —u?dt?+ (dx+vdt)?], (27)

wherex is a local coordinate for the spatial sectibrandp,
u and v are functions of spacetime coordinatestf. In

%o terms of this parametrization, we find the canonical Hamil-
f'(do) V(do) 1(q—2Z(¢o))°G tonian (up to surface terms which will be discussed below
2l 2l 2W( o) @D u
HC:J dx| v F+ EQ‘FAQJ (28

where the prime denotes differentiation with respectto

The Hawking temperature of the horizon can be calcuwherell,, I, andII, are the momenta conjugate o p
lated by analytically continuing the solution exterior to the andA;, respectively while
horizon to Euclidean time, imposing periodicity in the imagi-
nary time direction and requiring the resulting solution to be F=p'll,+¢'l14—11,~0 (29
regular at the horizon. The resulting Hawking temperature is

G=2¢"—2¢'p’ —2Gzn¢np—e2P@
f'(¢0;M.Q)
W= (22) 20
4l

As discussed if15], the expression for the black hole
entropy can most easily be derived by demanding that the J= —H;\l (31
first law of thermodynamics be satisfied with respect to in-
finitesimal variations of the mass and charge of the blackare secondary constraints. Note ttlaanndG generate spa-
hole. In particular, if we vary the parametdvsandq of the  tial and temporal diffeomorphisms, whilgis the Gauss law
solution while staying on the event horizdn=0, we get the constraint that generates Abelian gauge transformations.
condition on the corresponding variation ¢f, at the hori- The general solution presented in the previous section
zon: suggests that there are two independent, diffeomorphism in-
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variant physical observables, namely the mass of the blacnd replace the original Lagrange multipliers by
hole and its Abelian charge. These observables can easily be

expressed in terms of the phase space variables. In particular, ~ ue*
define u= 7Y (39
=1l,.. 2

Q=Tly, (32 —
The constant modg of Q is therefore a physical observable vere &' (40
and corresponds precisely to the Abelian charge in the solu-
tion Eq. (14). Similarly, we can define the mass observable: 5 uer

) A=Ay+ P. 41
I -2 21712 1\2 ]((;b) d),
M= 55| e (G5~ (4)))+ ———GK(4,Q)

(33) H, andH_ are previously neglected boundary terms deter-
mined by the requirement that the surface terms in the varia-

where tion of H, vanish for a given set of boundary conditions.
B We wish to consider thél+1)-dimensional analogue of a
¢ . (Q—2Z())? charged black hole in a box of fixed radius. We will therefore
K(¢,Q) ’=f d W (34) keep the value of the dilaton at the outer bounddry

:=¢ (o, ) fixed and independent of time, as well as the com-
M commutes with the constraints and is spatially constanponent of the metric along the world line of the bpey;

on the constraint surface since :=0y(o)]. The relevant boundary conditions on the vector
potential areA,(o,) =0 andAy(o,)=A, =const. Give the
oM 1 above conditions, the boundary variation of the canonical
L — _la—2 4t a2 )
X le p(GHP]:+ 2G ¢'G-eTP($,QT Hamiltonian Eq.(37) at o, will vanish if
(35 - ~
SH (M, Q)=usM|, +a6Q|o+. (42
where N
Since
(Ia, —2Z(¢))
73(¢,Q)=f d¢ (36)

- g 172
W(¢) ~ tt ) 43

u+ = . 2
The constant mode o¥1 is the mass parameter appearing in 2GMI=j(¢,) +1°GK(¢.,Q)

the solution Eq.16). Although the observables1t and Q |

are invariant under general diffeomorphisms, their conju- A =AJ+su(oy)
gatesllI ., andll, are only invariant with respect to diffeo- 2
morphisms that vanish on the boundaries of the sy$téfh

K (¢, ,9Q)

5 (44

Equation(42) can be directly integrated to yield

. . VT gt+t] (¢+)
The previous section neglected the boundary terms that H(M,Q)= TR
must be added to the canonical Hamiltonian in order that the
variational principle be well defined. These depend on the 2GIM  1?GK(¢ ,9)
boundary conditions and define the canonical energy, since x| 1= \/1— (60 - i(60) )

the remainder of the Hamiltonian vanishes on the constraint 1@+ 1P

surface. We now derive the boundary terms for boundary +Ag Q. (45)
conditions corresponding to a charged black hole in a box of

fixed, constant “radius”(surface of constant dilaton field Note that we have chosen the constant of integration so as to
For convenience we rewrite the canonical Hamiltonian aguarantee thaH , =0 when M=90=0. If K(¢,,Q) re-
follows: mains finite asp_. —o, then

IV. BOUNDARY TERMS IN THE HAMILTONIAN

[ —— - ~ -0
Hc=faidx(ug+v}"+A‘7)+H+—Hf (37) H (M, Q)— j((fn)M- (46)

where have replaced the original Hamiltonian constrdiby  Hence, on the constraint surfacs{ is proportional to the
the linear combination of constraints corresponding to theADM mass. The value of the constant of proportionality will

spatial derivative of the mass observable: depend on the boundary conditions on the metric @nd
M 1 This will be discussed in more detail below.
B a2 G We next consider the inner boundasy . Following the
IX le (GH”}— 2G ¢'G-eTPJ| (39 work of Louko and Whitind 13] we require our spatial slices
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to approach the bifurcation poink{=0) of the black hole With the above boundary conditions we find
along a static slice. These boundary conditions are natural _
for the consideration of the thermodynamics of the black v(o-)=0 (57)
hole, since the resulting spacetimes can be analytically con-
tinued to the Euclidean spacetime described by the non- ~ 2|
singular Gibbons-Hawking instanton. Given the general form u(o-)= Vo0 (58)
of the Killing vector in Eq.(13), for a static slice é_=0), o
the condition thatr_ be a bifurcation point reduces to 2 K(p_,Q)
A(o_)=~v aé’ +A,
¢'(0_)=0. (47) av(¢-,Q) -
From the thermodynamic considerations of Sec. Il, it followswhere we have defined
that the metric on the inner boundary must approach the
form ~ 2 (9K( ¢1 Q)
V(¢,Q)=V(¢)—GCl b (60)
ds’— -~ R¥(dt/a)*+ H(R)dR? (48) With these boundary conditions there will be no boundary
terms ato_ from the variation of the Hamiltonian if
whereR=0 at the bifurcation point_, H(0)=1 and 2ra
equals the periodicity of the Euclidean time required to make 5, _ 2l SM
the Euclidean solution regular at the horizofhe required - 5?/((1,7 ,0)
boundary conditions on the metric componentstifRf co-
ordinates are therefore 2 IK(¢ Q)‘
+ == — 5Q+A; 6Q.
o200 )1 (49) avV(¢-,9) JQ |a,
(61)
v(o_)=0 (50

Next we use the fact that the norm of the Killing vector is
constrained to vanish at the inner boundary to obtain

Hr=o o 1 | K($-.Q)
. 5MZEV(¢, ,Q)&b,—zTéQ. (62
u(o-)= Ng' (52) Substituting this into Eq(61) and simplifying gives
Since, in terms of phase space coordinates, SH_ :; S +Ay 6Q (63)
[K[?=1%e"2((Gmy)*—¢'?) (53 \which can be trivially integrated to yield

we must also impose the condition 1 _
H_(M,Q)=5—G¢—(M.Q)+Ao Q. (64)
m,(0_)=0 (54

By using Eg.(26) our final expression for the canonical

to ensure thatk|2,=0. Hamiltonian on the constraint surface takes the simple form

Finally, following Louko and Winters-Hilt[14], we 1
choose the boundary conditions on thél)Jovector potential H.=E(M,q:¢,)— —=Ss n (M,q)—q (65)
at the bifurcation point to be 2ma

Ay )=0 (55) where

V_g:tj(dh)

Ag(o_)=Ag =const. (56) E(M,q;¢)= Gl

X

2
1_\/ 2GMI  I°GK(¢+ ,q)

1—- -
SRecall that the time coordinate in this section is normalized so i(é+) i(é+)
thatg;; is fixed. The parametex therefore differs fromain Sec. II. (66)
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is the quasilocal energy ang=A; —Aj . We have also trace is most easily expressed in term of the eigenstates
used the fact that on the constraint surface=M and Q@  |M,Q) of the mass and charge operators:

=(, whereM and q correspond to the physical mass and

charge appearing in the general solution Ed).

- -BH
In addition to the dynamical variabled and g, the ca- Z(B. ¢+ ’7)_j dMJ dQu(M.Q)M.Qle™™|M. Q).
nonical Hamiltonian appears to depend on four fixed external (73

parametersg,;, ¢., a and y. ¢, plays the role of the .
effective box size, whiley is analogous to a chemical poten- In the a?o‘éeM(Mt-)?) IS alrll as yet unllznowr& m(:]qsure on the
tial. gg anda on the other hand must be fixed by imposing space of observables. Following Louko and Whitjag], we

. . o will make the simplest, physically reasonable assumptions
further boundary conditions. In particular, the melg@ IS Jbout the measure and the allowed valuesvioand Q. A

related to the choice of time coordinate along the boundary, e rigorous derivation of the measure will be addressed in

This is normally chosen to equal the proper time as measureghy e \ork. First of all, we restrict the ADM madé to be
with respect to a given physical metric. In vacuum dilaton

itv the choi f ohvsical S btle i rPositive. Secondly, we allow only those valueMdfandQ for
glravny, (tj €c C:,'Ce olp ysica rTle.mi.'S su tels!ncetk?nedfl:a which at least one bifurcative horizon exists whé(e) has
always do conformal reparame nza‘!ons Invoiving ”e ta-5 simple zerdi.e., no extremal black holes or naked singu-
ton. One must therefore define the “physical metric” to be

h hich determi " desi ¢ Ve test larities). Finally, we require the value of the dilaton at the
€ one which determines the geodesIcs of massive 1est Pafy ;4 to pe less than its value at the boundary of the sys-

ticles. For now we will consider the most general case anqem(i e., the box must lie outside the horizoso that equi-

write librium is in fact possible. With these assumptions the space
g9,,=h($)gPs (67) of allowed values for the observables is finite. This will be
e s made explicit for specific examples in the next section.
whereh(¢) is an arbitrary function of that must ultimately As in [13] (see alsd19]) we assume that
be determined experimentally. ¢f"YYo,)=—1, then L
M,Q){(M,Q|M,Q)=— 74
gt+t=_h(¢+)' (68) #(M,Q)(M,Q[M,Q) v (74)

The constantt must be fixed by thermodynamic consid- whereV is the volume of the allowed space of observables.
erations[13]. We have already shown thatra must be The final expression for the partition function is therefore
equal to the period of the corresponding Euclidean time in
order for the Euclideanized solution to be regular at the ho-
rizon. In the Euclidean formulation of black hgole thermody- £(B.d+.7)=V lfvdequBH(M'Q)e PEMGGI720,
namics, the inverse temperatuge at the boundary of the (75)
system is

~ ~ Note that the Bekenstein-Hawking entropy enters the parti-
B=V-09i"Yo,)2ma=2ma. (69 tion function as the logarithm of an apparent degeneracy of
the physical mass and charge eigenstates. Moreayés,
thermodynamically analoguous to particle number, while

_ _p-1 _ plays the role of a chemical potential.
H=EM.Q.¢:) =8 "Sen (M.a) =79 (70 The above expression, can in principle be integrated to

The final form of the canonical Hamiltonian is therefore

where yield the partition function describing the thermodynamics
charged black holes in a box for any particular dilaton grav-
Vh(é)j(ds) ity theory. We will now show that it gives the correct clas-
EMM,q;¢1)= - a sical thermodynamic behavior in the saddle-point approxi-
mation. In this approximation, the choice of measure is
2GMI  1°G?K (¢, ,q) irrelevant except in the unlikely event that it is exponential in
X1 1=\/1-+ —— : the observables. Thus, we have
i(¢y) i(¢y)
(7D Z(B, ¢+ ,y)me—l(ﬁiﬂ,m vY) (76)
The quantum partition function of interest is formally de-
f|ned as I(M1q1ﬁ1¢+ 17):B(E(Muq,¢+)_')’Q)_SBH(MaQ)(77)
Z[ B, ,y]=Trlexp(— BH)] (72

and M anda are the values of the mass and charge at the
where the trace is over all physical states ghdorresponds minimum of | (if one exist$. The equation obtained by ex-
to the(fixed) temperature at the boundary of the system. Thidgremizing with respect ttJ is
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= f(¢+,l\7,a) M. a) (3) = ! 3y —a® (3)
P=N"hp PrM.Q) (78) | 167TG(3)de\/ a®R(g®)+A). (85

which implies that the temperature at the boundary is equdn 2+1 dimensions, the gravitational consta®t® has di-
to the red-shifted Hawking temperature8y=21/T,  mensions of length. We now impose axial symmetry by con-

—471/f'(¢_ ,M,q) associated with the mean mass andSidering metrics of the forfhn

charge. _ oy P 1\ 2
Variation with respect ta gives for the chemical poten- ds(23)—gl“,dx dx"+ ¢(x)"(ado+A,dx") (86
tial: wherea is an arbitrary constant with dimensions of length
_ which, without loss of generality we take to be proportional
1 Bu(M,q) [dK(d4,a) IK(S-,0) to the (2+1)-dimensional Planck length=8G®). The one-
Y27 8 7 - (19 . _ )
q aq M form component#, are dimensionless. Unless the one-form

A=A,dx* is closed, the metric is not static so that the field
where as¢_=¢_(M,q) as determined by Eq19). Using ~ strengthF,,=A, ,—A, , is proportional to the angular mo-
Eq. (76) we can evaluate the mean energy, mean charge arffentum of the solution. With the above metric ansatz the
entropy of the system: reduced action is that of Jackiw-Teitelboim dilaton gravity
coupled to an Abelian gauge field:

(2 ¥ 9In(2)

E)= 1
I Rl A T 2= | dsz—g( OR(G)+ bA— 7 FHF,,|. 67
~E(M,q,¢+) @0  This action is already of the generic form Ef) without the
need for further definitions. In particularG=1/2, |
(@)=p in2)|  _— (81) =A"12 Vv(¢)=¢ andW(¢) = ¢>. Choosingr=1¢ as the
Q=8 dy T q spatial coordinate the general solution takes the form
1
J _ ds*=—f(r,M,J)dt*+ ————=dr? 88
S=(l—,3@ IN(Z)=Sgu(M,q). (82 ( ) f(r,M,J) ®8
where
A straightforward calculation verifies that the above expres- ) -
sions for the mean energy, charge and entropy automatically frM.J)= L M1+ 1 89)
obey the generalized first law (r,M.J)= 212 4r2 )"
JE _ O9E _ JE As mentioned above, the Abelian chargm this case is the
E)= Sy oM+ E&H W&m angular momentum of the black hole. For non-zérthere
* are again two event horizons, at
=B 16Sgy+ y&(q)—WéS (83
B 0Sent y @)= Woe. o =1 (M1 = (MI)Z=(31)Z/2)12 (90)
where wherer, (r;) is the outer(innen horizon. The associated
entropy is
JE(M,q,
Wie — (M,q,¢+) 84)
57¢+ ,\]’E _ ro _ _ A
S—47TI——47T¢(I'0)—M (91)

is a generalized surface pressure: it is the rate of change of

quasilocal energy with “box size.” where A=2madg(r,)=167G®) ¢(r,) is the invariant cir-
It can be verified that in the case of spherically symmetric mag(ro) (ro)

. . : cumference of the outer horizon, as calculated from(B@).
gravity, the above generic expressions for the mean energite gekenstein Hawking entropy can also be calculated di-
entropy, etc. correctly reproduce earlier res(itf] for the

ectly from Eq.(22) to be
semi-classical thermodynamics of Reissner-Nordstrom bIacL y a.(22

holes. We now consider a specific and interesting case that 1 rﬁ—riz

has not been analyzed in previous work: the rotating BTZ Tegu=7—3|— (92
Al ro

black hole.

VI. THE ROTATING BTZ BLACK HOLE
4n 2+1 dimensions, there is a generalized Birkhoff theorem

Starting with the Einstein action with cosmological con- which states that all solutions have axial symmetry, and are station-
stant in 2+1 dimensions: ary.
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In the semi-classical approximation, the mean energy of a J23 2
black hole in a box of fixed temperature and radius is M <F+ T (97)
+

+_
2 4
r +

(Ey= \/|§2f+ ( 1-+]1- 2m1® lee) (93) The volume of the allowed observable space is therefore
V= f\s‘?ri/ﬁ deJZI?,MriHi/ZlSdM—\/Eri 08
whereM andJ are the mean mass and angular momentum. B JIZ 3 1% (98
Note that we have used the fact that the physical metric is
g, in this case, so that(¢,)=1. The physical metric is
not asymptotically flatit is in fact a metric of constant cur-
vature which accounts for the strange asymptotic behavior e have calculated the Hamiltonian partition function for
of the mean energy as the box size goes to infinity. One cageneric dilaton gravity coupled to an Abelian gauge field.
invert this relation to express the mass in terms of the meamhe class of theories considered contains many Specific
energy: charged black holes of physical interest. For example, our
(E)23 (3y213 for.malism giyes t.he correct pgrtition function in thg saddle
5 — (94) point approximation for spherically symmetric gravity. The
2re 4rs generic results were used to obtain the partition function for

. . . . arotating BTZ black hole confined to a box of fixed radius
It is also straightforward to calculate the chemical potential 5, temperature.
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VIl. CONCLUSIONS

M=(E)—

Itis In principle the partition function that we derived can be
3 > integrated exactly. In practice, however, a numerical analysis
Ji \ /1—r0/r+ is required in order to go beyond the semi-classical approxi-
_ mation. In a subsequent paper, we will do such a numerical
Y= 32/6 (99) analysis for specific theories, such as the BTZ black hole, in
2r§ A /1_ order to gain further information about phase structure, spe-
2r2r? cific heats, etc. The ansatz that we used is, however, only
rigorous in the semi-classical approximation. In particular,
which approaches the integration measure, although motivated by plausibility

arguments, was not derived from the fundamental quantum

Y — ﬂz (96) theory, so it is likely that there are fu.rther guantum correc-
2rg tions that we have not been able to incorporate. A detailed
analysis of the possible quantum corrections is currently in
asr —oo, progress.

Finally, we calculate the allowed volumeof the physi-
cal configuration space. We wish to restrict the valueMof
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